

Safety Data Sheet according to (EC) No 1907/2006 as amended

Page 1 of 19

SDS No.: 75742

V012.1 Revision: 21.12.2023

printing date: 15.01.2024

Replaces version from: 28.11.2022

TEROSON PU 8596 known as TEROSTAT 8596 SP 400ml

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

TEROSON PU 8596 known as TEROSTAT 8596 SP 400ml

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use:

adhesive and sealant for direct glazing

1.3. Details of the supplier of the safety data sheet

Henkel Ltd

Adhesives

Wood Lane End

HP2 4RQ Hemel Hempstead

Great Britain

Phone: +44 (1442) 278000

SDSinfo.Adhesive@henkel.com

For Safety Data Sheet updates please visit our website https://mysds.henkel.com/index.html#/appSelection or www.henkel-adhesives.com.

1.4. Emergency telephone number

24 Hours Emergency Tel: +44 (0)1442 278497

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (CLP):

Acute toxicity Category 4

H332 Harmful if inhaled. Route of Exposure: Inhalation

Skin irritation Category 2

H315 Causes skin irritation.

Serious eye irritation Category 2

H319 Causes serious eye irritation.

Respiratory sensitizer Category 1

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

Skin sensitizer Category 1

H317 May cause an allergic skin reaction.

Specific target organ toxicity - single exposure Category 3

H335 May cause respiratory irritation.

Target organ: respiratory tract irritation

Specific target organ toxicity - repeated exposure Category 2

H373 May cause damage to organs through prolonged or repeated exposure.

TEROSON PU 8596 known as TEROSTAT 8596 SP 400ml

SDS No.: 75742 V012.1 Page 2 of 19

2.2. Label elements

Label elements (CLP):

Hazard pictogram:

Contains Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with

1,1'-methylenebis[4-isocyanatobenzene]

Diphenylmethane diisocyanate, isomers and homologues

Signal word: Danger

Hazard statement: H315 Causes skin irritation.

H317 May cause an allergic skin reaction. H319 Causes serious eye irritation.

H332 Harmful if inhaled.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H335 May cause respiratory irritation.

H373 May cause damage to organs through prolonged or repeated exposure.

Supplemental information As from 24 August 2023 adequate training is required before industrial or professional

Further information: https://www.feica.eu/PUinfo

Precautionary statement: P260 Do not breathe dust/fume/spray. Prevention P280 Wear protective gloves/eye protection.

Precautionary statement:

Response

P342+P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor.

2.3. Other hazards

Following substances are present in a concentration ≥ the concentration limit for depiction in Section 3 and fulfill the criteria for PBT/vPvB, or were identified as endocrine disruptor (ED):

This mixture does not contain any substances in a concentration ≥ the concentration limit for depiction in Section 3 that are assessed to be a PBT, vPvB or ED.

SECTION 3: Composition/information on ingredients

3.2. Mixtures

Page 3 of 19

SDS No.: 75742 V012.1

Declaration of the ingredients according to CLP (EC) No 1272/2008:

Hazardous components CAS-No. EC Number REACH-Reg No.	Concentration	Classification	Specific Conc. Limits, M- factors and ATEs	Add. Information
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with 1,1'-methylenebis[4-isocyanatobenzene] 59675-67-1	20- 40 %	Acute Tox. 4, Inhalation, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Resp. Sens. 1, H334 STOT SE 3, H335 STOT RE 2, H373	oral:ATE = > 5.000 mg/kg inhalation:ATE = 1,5 mg/l;dust/mist	
4,4'- methylenediphenyl diisocyanate 101-68-8 202-966-0 01-2119457014-47	0,1-< 1 %	Carc. 2, H351 Acute Tox. 4, Inhalation, H332 STOT RE 2, H373 Eye Irrit. 2, H319 STOT SE 3, H335 Skin Irrit. 2, H315 Resp. Sens. 1, H334 Skin Sens. 1, H317	Eye Irrit. 2; H319; C >= 5 % Skin Irrit. 2; H315; C >= 5 % Resp. Sens. 1; H334; C >= 0,1 % STOT SE 3; H335; C >= 5 %	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1 227-534-9 01-2119480143-45	0,01-< 0,1 %	STOT RE 2, H373 Carc. 2, H351 Acute Tox. 4, Inhalation, H332 Eye Irrit. 2, H319 STOT SE 3, H335 Skin Irrit. 2, H315 Skin Sens. 1, H317 Resp. Sens. 1, H334	Eye Irrit. 2; H319; C >= 5 % Skin Irrit. 2; H315; C >= 5 % Resp. Sens. 1; H334; C >= 0,1 % STOT SE 3; H335; C >= 5 %	

If no ATE values are displayed, please refer to LD/LC50 values in Section 11. For full text of the H - statements and other abbreviations see section 16 "Other information".

SECTION 4: First aid measures

4.1. Description of first aid measures

General information:

Symptoms of poisoning may occur even after several hours, continue medical observation for at least 48 hours after the accident.

Inhalation:

Fresh air, oxygen supply, warmth; seek specialist medical attention.

Delayed effects possible after inhalation.

Skin contact:

IF ON SKIN: Wash with plenty of soap and water.

In case of adverse health effects seek medical advice.

Eye contact:

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Ingestion:

Rinse mouth, drink 1-2 glasses of water, do not induce vomiting, consult a doctor.

SDS No.: 75742 V012.1 Page 4 of 19

4.2. Most important symptoms and effects, both acute and delayed

SKIN: Rash, Urticaria.

RESPIRATORY: Irritation, coughing, shortness of breath, chest tightness.

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

SKIN: Redness, inflammation.

EYE: Irritation, conjunctivitis.

4.3. Indication of any immediate medical attention and special treatment needed

See section: Description of first aid measures

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media:

All common extinguishing agents are suitable.

Extinguishing media which must not be used for safety reasons:

High pressure waterjet

5.2. Special hazards arising from the substance or mixture

In case of fire toxic gases can be released.

5.3. Advice for firefighters

Wear protective equipment.

Wear self-contained breathing apparatus.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Wear protective equipment.

Avoid contact with skin and eyes.

Keep unprotected persons away.

6.2. Environmental precautions

Do not empty into drains / surface water / ground water.

6.3. Methods and material for containment and cleaning up

Remove mechanically.

Dispose of contaminated material as waste according to Section 13.

6.4. Reference to other sections

See advice in section 8

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Hygiene measures:

Wash hands before work breaks and after finishing work.

Do not eat, drink or smoke while working.

Take off contaminated clothing and wash before reuse.

7.2. Conditions for safe storage, including any incompatibilities

Ensure good ventilation/extraction.

Keep away from heat and direct sunlight.

Store in a cool, dry place.

Storage at 15 to 25°C is recommended.

SDS No.: 75742 V012.1 TEROSON PU 8596 known as TEROSTAT 8596 SP 400ml Page 5 of 19

7.3. Specific end use(s)

adhesive and sealant for direct glazing

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational Exposure Limits

Valid for

Great Britain

Ingredient [Regulated substance]	egulated substance] ppm mg/m³ Value type		Short term exposure limit category / Remarks	Regulatory list	
Di-"isononyl" phthalate 28553-12-0 [Diisononyl phthalate]		5	Time Weighted Average (TWA):		EH40 WEL
Carbon black 1333-86-4 [CARBON BLACK]		3,5	Time Weighted Average (TWA):		EH40 WEL
Carbon black 1333-86-4 [CARBON BLACK]		7	Short Term Exposure Limit (STEL):	15 minutes	EH40 WEL
Limestone 1317-65-3 [CALCIUM CARBONATE, INHALABLE DUST]		10	Time Weighted Average (TWA):		EH40 WEL
Limestone 1317-65-3 [CALCIUM CARBONATE, RESPIRABLE DUST]		4	Time Weighted Average (TWA):		EH40 WEL
Limestone 1317-65-3 [LIMESTONE, RESPIRABLE MARBLE, RESPIRABLE]		4	Time Weighted Average (TWA):		EH40 WEL
Limestone 1317-65-3 [LIMESTONE, TOTAL INHALABLE MARBLE, TOTAL INHALABLE]		10	Time Weighted Average (TWA):		EH40 WEL
4,4'-Methylenediphenyl diisocyanate 101-68-8 [ISOCYANATES, ALL (AS -NCO)]		0,02	Time Weighted Average (TWA):		EH40 WEL
4,4'-Methylenediphenyl diisocyanate 101-68-8 [ISOCYANATES, ALL (AS -NCO)]		0,07	Short Term Exposure Limit (STEL):	15 minutes	EH40 WEL
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1 [ISOCYANATES, ALL (AS -NCO)]		0,02	Time Weighted Average (TWA):		EH40 WEL
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1 [ISOCYANATES, ALL (AS -NCO)]		0,07	Short Term Exposure Limit (STEL):	15 minutes	EH40 WEL

Occupational Exposure Limits

Valid for

Ireland

Ingredient [Regulated substance]	ppm	mg/m ³	Value type	Short term exposure limit category / Remarks	Regulatory list
Di-"isononyl" phthalate 28553-12-0 [Diisononyl phthalate]		5	Time Weighted Average (TWA):		IR_OEL
Carbon black 1333-86-4 [CARBON BLACK]		3	Time Weighted Average (TWA):		IR_OEL
Limestone 1317-65-3 [CALCIUM CARBONATE]		4	Time Weighted Average (TWA):		IR_OEL
Limestone 1317-65-3 [CALCIUM CARBONATE]		10	Time Weighted Average (TWA):		IR_OEL
4,4'-Methylenediphenyl diisocyanate 101-68-8	0,005		Time Weighted Average (TWA):		IR_OEL

Page 7 of 19

0,02	Time Weighted Average		IR_OEL
	(TWA):		
0,07	Short Term Exposure	15 minutes	IR_OEL
	Limit (STEL):		
	,		
0.07	Short Term Exposure	15 minutes	IR_OEL
-,			
0.02	Time Weighted Average		IR OEL
~,~-	ε		
	0,02	0,07 Short Term Exposure Limit (STEL): 0,07 Short Term Exposure Limit (STEL):	(TWA): 0,07 Short Term Exposure Limit (STEL): 15 minutes 0,07 Short Term Exposure Limit (STEL): 15 minutes 0,07 Short Term Exposure Limit (STEL): 15 minutes 0,07 Time Weighted Average 15 minutes 0,08 Time Weighted Average 15 minutes 0,09 Time Weighted Average 15 minutes 0,001 Time Weighted Average 15 minutes 0,002 Time Weighted Average 15 minutes 0,003 Time Weighted Average 15 minutes 0,004 Time Weighted Average 15 minutes 0,007 Time Weighted Average

Predicted No-Effect Concentration (PNEC):

Name on list	Environmental Compartment	Exposure period	Value				Remarks
		F 2	mg/l	ppm	mg/kg	others	
4,4'- methylenediphenyl diisocyanate 101-68-8	aqua (freshwater)		0,0037 mg/l				
4,4'- methylenediphenyl diisocyanate 101-68-8	aqua (intermittent releases)		0,037 mg/l				
4,4'- methylenediphenyl diisocyanate 101-68-8	aqua (marine water)		0,00037 mg/l				
4,4'- methylenediphenyl diisocyanate 101-68-8	sediment (freshwater)				11,7 mg/kg		
4,4'- methylenediphenyl diisocyanate 101-68-8	sediment (freshwater)				1,17 mg/kg		
4,4'- methylenediphenyl diisocyanate 101-68-8	Soil				2,33 mg/kg		
4,4'- methylenediphenyl diisocyanate 101-68-8	Predator						no potential for bioaccumulation
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	aqua (marine water)		0,1 mg/l				
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	sewage treatment plant (STP)		1 mg/l				
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	aqua (intermittent releases)		10 mg/l				
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	aqua (freshwater)		1 mg/l				
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	Soil				1 mg/kg		

Derived No-Effect Level (DNEL):

SDS No.: 75742 V012.1

Name on list	Application Area	Route of Exposure	Health Effect	Exposure Time	Value	Remarks
4,4'- methylenediphenyl diisocyanate 101-68-8	Workers	inhalation	Long term exposure - local effects		0,05 mg/m3	no potential for bioaccumulation
4,4'- methylenediphenyl diisocyanate 101-68-8	Workers	inhalation	Acute/short term exposure - local effects		0,1 mg/m3	no potential for bioaccumulation
4,4'- methylenediphenyl diisocyanate 101-68-8	General population	inhalation	Long term exposure - local effects		0,025 mg/m3	no potential for bioaccumulation
4,4'- methylenediphenyl diisocyanate 101-68-8	General population	inhalation	Acute/short term exposure - local effects		0,05 mg/m3	no potential for bioaccumulation
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	Workers	inhalation	Acute/short term exposure - local effects		0,1 mg/m3	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	Workers	inhalation	Long term exposure - local effects		0,05 mg/m3	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	General population	inhalation	Acute/short term exposure - local effects		0,05 mg/m3	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	General population	inhalation	Long term exposure - local effects		0,025 mg/m3	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	Workers	dermal	Long term exposure - local effects			
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	Workers	dermal	Acute/short term exposure - local effects			
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	General population	dermal	Long term exposure - local effects			
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	General population	dermal	Acute/short term exposure - local effects			

Biological Exposure Indices:

Ingredient [Regulated substance]	Parameters	Biological specimen	Sampling time	Conc.	Basis of biol. exposure index	 Additional Information
4,4'-Methylenediphenyl diisocyanate 101-68-8 [ISOCYANATES (APPLIES TO HDI, IPDI, TDI AND MDI)]	Isocyanate- derived diamine	Creatinine in urine	Sampling time: At the end of the period of exposure.		UKEH40BMG V	
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1 [ISOCYANATES (APPLIES TO HDI, IPDI, TDI AND MDI)]	Isocyanate- derived diamine	Creatinine in urine	Sampling time: At the end of the period of exposure.		UKEH40BMG V	

8.2. Exposure controls:

Engineering controls:

Use only in well ventilated areas.

Respiratory protection:

The product should only be used at workplaces with intensive ventilation/extraction.

If intensive ventilation/extraction is not possible respiratory protection equipment with ABEK P2 filter (EN 14387) should be worn.

SDS No.: 75742 V012.1 Page 9 of 19

Hand protection:

Chemical-resistant protective gloves (EN 374).

Suitable materials for short-term contact or splashes (recommended: at least protection index 2, corresponding to > 30 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

Suitable materials for longer, direct contact (recommended: protection index 6, corresponding to > 480 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

This information is based on literature references and on information provided by glove manufacturers, or is derived by analogy with similar substances. Please note that in practice the working life of chemical-resistant protective gloves may be considerably shorter than the permeation time determined in accordance with EN 374 as a result of the many influencing factors (e.g. temperature). If signs of wear and tear are noticed then the gloves should be replaced.

Eye protection:

Goggles which can be tightly sealed.

Protective eye equipment should conform to EN166.

Skin protection:

Wear protective equipment.

Protective clothing that covers arms and legs.

Protective clothing should conform to EN 14605 for liquid splashes or to EN 13982 for dusts.

Advices to personal protection equipment:

Use only personal protection that's CE-labelled according to Directive 89/686/EEC (Europe) or to Regulation No. 819 of 19 August 1994 (Norway), or equivalent.

The information provided on personal protective equipment is for guidance purposes only. A full risk assessment should be conducted prior to using this product to determine the appropriate personal protective equipment to suit local conditions. Personal protective equipment should conform to the relevant EN standard.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

solid material Delivery form Delivery form paste Colour black Colour black Odor odourless specific, Faintly Odor

Physical state

Melting point Not applicable, Determination technically not possible

Solidification temperature Not applicable, Product is a solid.

Not applicable, Decomposes > 140°C (284°F). Initial boiling point

Flammability The product is not flammable. Explosive limits Not applicable, Product is a solid. Flash point Not applicable, Product is a solid. Auto-ignition temperature Not applicable, Product is a solid.

Not applicable, Substance/mixture is not self-reactive, no organic Decomposition temperature

peroxide and does not decompose under foreseen conditions of use

pΗ Not applicable, Product reacts with water.

Viscosity (kinematic) Not applicable, Product is a solid. Viscosity, dynamic 4.000 Pa*s Viscosity Physica; HT-Method

(; 20 °C (68 °F); Conc.: 100 % product)

Solubility (qualitative)

(20 °C (68 °F); Solvent: Water)

Partition coefficient: n-octanol/water Not applicable

> Mixture < 0.1 hPa

Insoluble

Vapour pressure

(20 °C (68 °F))

1,2 g/cm3 QP2107.1; Density Density

(20 °C (68 °F))

Relative vapour density: Not applicable, Product is a solid. Particle characteristics Not applicable, mixture is a paste.

9.2. Other information

Other information not applicable for this product

SECTION 10: Stability and reactivity

10.1. Reactivity

Reaction with water, alcohols, amines.

Reacts with water: Pressure built up in closed vessel (CO2).

10.2. Chemical stability

Stable under recommended storage conditions.

10.3. Possibility of hazardous reactions

See section reactivity

10.4. Conditions to avoid

Humidity

10.5. Incompatible materials

See section reactivity.

10.6. Hazardous decomposition products

At higher temperatures isocyanate may be released.

Carbon dioxide is generated under contact with moisture, leading to pressure in the cans. Danger of cans bursting!

SECTION 11: Toxicological information

General toxicological information:

An allergic reaction cannot be excluded after repeated skin contact.

11.1 Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute oral toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	Acute toxicity estimate (ATE)	> 5.000 mg/kg		Expert judgement
4,4'- methylenediphenyl diisocyanate 101-68-8	LD50	> 2.000 mg/kg	rat	other guideline:
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	LD50	> 2.000 mg/kg	rat	other guideline:

Acute dermal toxicity:

SDS No.: 75742 V012.1

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	LD50	> 9.400 mg/kg	rabbit	OECD Guideline 402 (Acute Dermal Toxicity)
4,4'- methylenediphenyl diisocyanate 101-68-8	LD50	> 9.400 mg/kg	rabbit	OECD Guideline 402 (Acute Dermal Toxicity)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	LD50	> 9.400 mg/kg	rabbit	OECD Guideline 402 (Acute Dermal Toxicity)

Acute inhalative toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Test atmosphere		Species	Method
CAS-No.	type			time		
1 ,	Acute toxicity estimate (ATE)	1,5 mg/l	dust/mist	4 h		Expert judgement

Skin corrosion/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Result	Exposure	Species	Method
CAS-No.		time		
4,4'- methylenediphenyl	irritating	4 h	rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
diisocyanate				
101-68-8				
o-(p-	irritating		rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
Isocyanatobenzyl)phenyl				
isocyanate				
5873-54-1				

Serious eye damage/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Result	Exposure	Species	Method
CAS-No.		time		
4,4'- methylenediphenyl	irritating		human	Weight of evidence
diisocyanate				
101-68-8				

Respiratory or skin sensitization:

SDS No.: 75742 V012.1

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Test type	Species	Method
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4-isocyanatobenzene] 59675-67-1	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	sensitising	Respiratory sensitisation	guinea pig	not specified
4,4'- methylenediphenyl diisocyanate 101-68-8	sensitising	Buehler test	guinea pig	OECD Guideline 406 (Skin Sensitisation)
4,4'- methylenediphenyl diisocyanate 101-68-8	sensitising	Respiratory sensitisation	guinea pig	not specified
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	sensitising	Respiratory sensitisation	guinea pig	not specified
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	not sensitising	Buehler test	guinea pig	OECD Guideline 406 (Skin Sensitisation)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)

Germ cell mutagenicity:

SDS No.: 75742 V012.1

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Type of study / Route of administration	Metabolic activation / Exposure time	Species	Method
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
4,4'- methylenediphenyl diisocyanate 101-68-8	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		EU Method B.13/14 (Mutagenicity)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	negative	inhalation		rat	OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
4,4'- methylenediphenyl diisocyanate 101-68-8	negative	inhalation		rat	OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	negative	inhalation		rat	OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)

Carcinogenicity

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous components CAS-No.	Result	Route of application	Exposure time / Frequency of treatment	Species	Sex	Method
4,4'- methylenediphenyl diisocyanate 101-68-8	carcinogenic	inhalation: aerosol	2 y 6 h/d	rat	male/female	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	carcinogenic	inhalation: aerosol	2 y 6 h/d, 5 d/w	rat	male/female	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)

Reproductive toxicity:

No data available.

STOT-single exposure:

No data available.

STOT-repeated exposure:

SDS No.: 75742 V012.1

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result / Value	Route of application	Exposure time / Frequency of treatment	Species	Method
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3- propanetriol (3:1), polymer with 1,1'- methylenebis[4- isocyanatobenzene] 59675-67-1	NOAEL 0,0002 mg/l	inhalation: aerosol	2 years 6 h/d; 5 d/w	rat	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
4,4'- methylenediphenyl diisocyanate 101-68-8	NOAEL 0,0002 mg/l	inhalation: aerosol	main: 2 y; satellite:1 y 6 h/d; 5 d/w	rat	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)
o-(p- Isocyanatobenzyl)phenyl isocyanate 5873-54-1	NOAEL 0,2 mg/m³	inhalation: aerosol	2 y 6 h/d, 5 d/w	rat	OECD Guideline 453 (Combined Chronic Toxicity / Carcinogenicity Studies)

Aspiration hazard:

No data available.

11.2 Information on other hazards

not applicable

SDS No.: 75742 V012.1

SECTION 12: Ecological information

Page 15 of 19

General ecological information:

Do not empty into drains, soil or bodies of water.

12.1. Toxicity

Toxicity (Fish):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with 1,1'-methylenebis[4-isocyanatobenzene] 59675-67-1	LC50	> 1.000 mg/l	96 h	not specified	not specified
4,4'- methylenediphenyl diisocyanate 101-68-8	LL50	> 100 mg/l	96 h	Danio rerio	OECD Guideline 203 (Fish, Acute Toxicity Test)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1		Toxicity > Water Solubility	96 h	Danio rerio	OECD Guideline 203 (Fish, Acute Toxicity Test)

Toxicity (aquatic invertebrates):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with 1,1'-methylenebis[4-isocyanatobenzene] 59675-67-1	EC50	> 1.000 mg/l	48 h	not specified	not specified
4,4'- methylenediphenyl diisocyanate 101-68-8	EC50	> 100 mg/l	48 h	1 &	EU Method C.2 (Acute Toxicity for Daphnia)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1		Toxicity > Water Solubility	24 h		OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)

Chronic toxicity (aquatic invertebrates):

The table below presents the data of the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
4,4'- methylenediphenyl diisocyanate 101-68-8		10 mg/l	21 d	1 0	OECD 211 (Daphnia magna, Reproduction Test)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	NOEC	Toxicity > Water solubility	21 day	1 0	OECD 211 (Daphnia magna, Reproduction Test)

Toxicity (Algae):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with 1,1'-methylenebis[4-isocyanatobenzene] 59675-67-1	EC50	> 1.640 mg/l	72 h	not specified	not specified
4,4'- methylenediphenyl diisocyanate 101-68-8	EL50	> 100 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
4,4'- methylenediphenyl diisocyanate 101-68-8	NOELR	100 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	EC50	Toxicity > Water Solubility	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	NOELR	Toxicity > Water Solubility	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)

Toxicity (microorganisms):

SDS No.: 75742 V012.1

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Oxirane, methyl-, polymer with oxirane, ether with 1,2,3-propanetriol (3:1), polymer with 1,1'-methylenebis[4-isocyanatobenzene] 59675-67-1	IC50	> 100 mg/l	3 h		OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
4,4'- methylenediphenyl diisocyanate 101-68-8	EC50	> 1.000 mg/l		predominantly domestic sewage	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)

12.2. Persistence and degradability

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	Result	Test type	Degradability	Exposure	Method
CAS-No.				time	
4,4'- methylenediphenyl	not readily biodegradable.	aerobic	0 %	28 d	OECD Guideline 301 F (Ready
diisocyanate					Biodegradability: Manometric
101-68-8					Respirometry Test)
o-(p-Isocyanatobenzyl)phenyl	not inherently	aerobic	0 %	28 d	OECD Guideline 302 C (Inherent
isocyanate	biodegradable				Biodegradability: Modified MITI
5873-54-1	_				Test (II))

12.3. Bioaccumulative potential

The table below presents the data of the classified substances present in the mixture.

Hazardous substances CAS-No.	Bioconcentratio n factor (BCF)	Exposure time	Temperature	Species	Method
4,4'- methylenediphenyl diisocyanate 101-68-8	92 - 200	28 d		Cyprinus carpio	OECD Guideline 305 E (Bioaccumulation: Flow-through Fish Test)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	200	28 day		Cyprinus carpio	OECD Guideline 305 E (Bioaccumulation: Flow-through Fish Test)

12.4. Mobility in soil

The table below presents the data of the classified substances present in the mixture.

Hazardous substances CAS-No.	LogPow	Temperature	Method
4,4'- methylenediphenyl diisocyanate 101-68-8	4,51	22 °C	OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)
o-(p-Isocyanatobenzyl)phenyl isocyanate 5873-54-1	5,22		QSAR (Quantitative Structure Activity Relationship)

12.5. Results of PBT and vPvB assessment

The table below presents the data of the classified substances present in the mixture.

Hazardous substances	PBT / vPvB
CAS-No.	
4,4'- methylenediphenyl diisocyanate	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very
101-68-8	Bioaccumulative (vPvB) criteria.
o-(p-Isocyanatobenzyl)phenyl isocyanate	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very
5873-54-1	Bioaccumulative (vPvB) criteria.

12.6. Endocrine disrupting properties

not applicable

12.7. Other adverse effects

No data available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Product disposal:

In consultation with the responsible local authority, must be subjected to special treatment.

Waste code

The valid EWC waste code numbers are source-related. The manufacturer is therefore unable to specify EWC waste codes for the articles or products used in the various sectors. The EWC codes listed are intended as a recommendation for users. We will be happy to advise you. 080409

SECTION 14: Transport information

14.1. UN number or ID number

SDS No.: 75742 V012.1

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.2. UN proper shipping name

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.3. Transport hazard class(es)

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.4. Packing group

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.5. Environmental hazards

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.6. Special precautions for user

Not hazardous according to RID, ADR, ADN, IMDG, IATA-DGR.

14.7. Maritime transport in bulk according to IMO instruments

not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Ozone Depleting Substance (ODS) (Regulation (EC) No 1005/2009):

Prior Informed Consent (PIC) (Regulation (EU) No 649/2012):

Not applicable Persistent organic pollutants (Regulation (EU) 2019/1021):

VOC content

(2010/75/EU)

Not applicable Not applicable

VOC Paints and Varnishes (EU):

Product (sub)category: This product is not a subject of the Directive 2004/42/EC

15.2. Chemical safety assessment

A chemical safety assessment has not been carried out.

SECTION 16: Other information

The labelling of the product is indicated in Section 2. The full text of all abbreviations indicated by codes in this safety data sheet are as follows:

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H319 Causes serious eye irritation.

H332 Harmful if inhaled.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H335 May cause respiratory irritation.

H351 Suspected of causing cancer.

H373 May cause damage to organs through prolonged or repeated exposure.

ED: Substance identified as having endocrine disrupting properties

EU OEL: Substance with a Union workplace exposure limit
EU EXPLD 1: Substance listed in Annex I, Reg (EC) No. 2019/1148
EU EXPLD 2 Substance listed in Annex II, Reg (EC) No. 2019/1148
SVHC: Substance of very high concern (REACH Candidate List)
PBT: Substance fulfilling persistent, bioaccumulative and toxic criteria

PBT/vPvB: Substance fulfilling persistent, bioaccumulative and toxic plus very persistent and very

bioaccumulative criteria

vPvB: Substance fulfilling very persistent and very bioaccumulative criteria

Further information:

This Safety Data Sheet has been produced for sales from Henkel to parties purchasing from Henkel, is based on Regulation (EC) No 1907/2006 and provides information in accordance with applicable regulations of the European Union only. In that respect, no statement, warranty or representation of any kind is given as to compliance with any statutory laws or regulations of any other jurisdiction or territory other than the European Union. When exporting to territories other than the European Union, please consult with the respective Safety Data Sheet of the concerned territory to ensure compliance or liaise with Henkel's Product Safety and Regulatory Affairs Department (SDSinfo.Adhesive@henkel.com) prior to export to other territories than the European Union.

This information is based on our current level of knowledge and relates to the product in the state in which it is delivered. It is intended to describe our products from the point of view of safety requirements and is not intended to guarantee any particular properties.

Dear Customer,

Henkel is committed to creating a sustainable future by promoting opportunities along the entire value chain. If you would like to contribute by switching from a paper to the electronic version of SDS, please contact the local Customer Service representative. We recommend to use a non-personal email address (e.g. SDS@your_company.com).

Relevant changes in this safety data sheet are indicated by vertical lines at the left margin in the body of this document. Corresponding text is displayed in a different color on shadowed fields.